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Abstract. Sentence compression is a task of generating a grammatical
short sentence from an original sentence, retaining the most important
information. The existing methods of removing the constituents in the
parse tree of an original sentence cannot deal with recursive structures
which appear in the parse tree. This paper proposes a method to remove
such structure and generate a grammatical short sentence. Compression
experiments have shown the method to provide an ability to sentence
compression comparable to the existing methods and generate good com-
pressed sentences for sentences including recursive structures, which the
previous methods failed to compress.
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1 Introduction

Sentence compression is a task of summarizing a single sentence. It is useful
for automatic text summarization and other applications such as generating
subtitles or reducing messages for mobile devices.

Several sentence compression algorithms have been proposed so far. These
algorithms produce a summary of a single sentence, which is called compression.
Compression should satisfy the following conditions:

– It should be grammatical.
– It should retain the most important information of the original sentence.

In previous works, the problem of sentence compression have been simplified
to removing redundant words or phrases from the original sentence. To gener-
ate a compression, the algorithms utilize syntactic information, such as phrase
structure, dependency structure, part-of-speech and so on. Most of the algo-
rithms only remove some redundant words or phrases, then the compression is
a subsequence of the original sentence.

Knight and Marcu have proposed a probabilistic method of removing redun-
dant constituents from the parse tree of the original sentence[2]. The probabilities
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of removing constituents are estimated from a compression parallel corpus con-
sisting of the pairs of original sentences and the corresponding compressions.
Turner and Charniak have proposed an alternative method to approximate such
probabilities without compression parallel corpora to overcome the lack of com-
pression corpora[7]. Unno et al. have proposed a method of using maximum en-
tropy method[1] so that more various features are dealt with, while Knight and
Marcu have used only simple PCFG[8]. Vandeghinste and Pan have proposed
a method of combining a probabilistic approach like above and a rule-based
approach to avoid generating ungrammatical sentences[9].

These methods have only one operation of removing a constituent from a
parse tree. However, the operation is not enough to compress any kind of sen-
tences. The parse trees of some compressions have quite different structure from
those of the original sentences so that it is impossible to obtain the compressed
version of parse trees by removing constituents.

To solve the problem, this paper proposes an operation of transforming parse
trees for sentence compression. We focus on recursive structures, which fre-
quently appear in parse trees and represent adjuncts, coordinations, embedded
sentences and so on. The operation removes recursive structures from the parse
tree while preserving its grammaticality. Our method models sentence compres-
sion as a process of removing constituents and recursive structures from the
parse tree of an original sentence. The model is probabilistic and learned from
a compression parallel corpus. Our method can compress sentences including
recursive structures.

Experimental results have shown that our method is comparable with the ex-
isting methods and that removing recursive structure from parse trees is effective
for compressing certain sentences.

The organization of this paper is as follows: We review the previous methods
of removing constituents in section 2. Section 3 describes our method which
deal with recursive structures in parse trees for sentence compression. Section 4
presents some experimental evaluation of our method compared to the previous
methods. Section 5 concludes this paper and presents future works.

2 Sentence Compression by Removing Constituents

In previous works, given an input sentence l, a compression s is formed by
removing words from l. No rearranging words or no adding new words take place.
The 2|l| compression candidates exist and the problem of sentence compression
can be formalized as determining which candidate is the best compression.

Knight and Marcu[2] tackled this problem by presenting a noisy channel
model. The method finds the compression s which maximizes the conditional
probability P (s|l). The model P (s|l) is decomposed into two models: the source
model P (s) and the channel model P (l|s). That is, the compression s′ is defined
as follows:

s′ = argmax
s

P (s|l) = argmax
s

P (s)P (l|s)
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Fig. 1. Parse tree of sentence (1)
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Fig. 2. Parse tree of sentence (2) created from (1) by Knight and Marcu’s method

The source model P (s) evaluates the gramaticality of s. The channel model
P (l|s) determines which parts in l are redundant.

P (s) and P (l|s) are calculated based on the parse tree. As an example, let
us consider the following original sentence (1) and its compression (2):

(1) Like facelift, much of ATM’s screen performance depends on
the underlying application.

(2) Much of ATM’s performance depends on the underlying
application.

The original sentence (1) is parsed into a tree shown in Fig. 1. The parse tree
of compression (2) is created by removing some constituents from the original
tree, that is, removing nodes “PP2”, “COMMA6” and “NN16”. These nodes
respectively correspond to word sequences “Like facelift”, “,” and “screen” which
do not appear in compression (2). In this case, the probability P (s) is high
because the parse tree of (2) is grammatical.

P (l|s) is learned from a compression parallel corpus consisting of pairs of
sentences and compressions. A parse tree is assigned to every sentence and every
compression. The method finds the correspondence between the nodes in the
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Fig. 3. Mismatch between parse trees of original sentence and compression

original parse tree and the compressed one in top-down fashion, and identifies
the constituents removed from the original parse tree. For example, there exists
a correspondence between the parse trees shown in Fig. 1 and Fig. 2, and nodes
PP2, COMMA6 and NN16 are identified with removed constituents.

As the following example shows, however, there is certain cases where the
method cannot find the correspondence between original and compressed parse
trees. (see Fig. 3).

(3) The user can then abort the transmission, he said .
(4) The user can then abort the transmission.

In this example, the method first finds the correspondence between “S →
NP VP” in the compressed parse tree and “S → S COMMA NP VP” in
the original parse tree. In the next stage, the method finds no correspondence
because the child “PRP” of NP in the original parse tree does not match the
children “DT” and “NN” in the compressed parse tree.

On the contrary, Unno et al.[8] have proposed a method for finding correspon-
dences between both parse trees in a bottom-up fashion. The method parses only
original sentences and extracts compressed parse trees from the original parse
trees as in Fig. 4. Even though finding the correspondence always succeeds, the
compressed parse trees become sometimes ungrammatical. Unno et al. directly
estimate probabilities of removing constituents and do not evaluate the gram-
maticality of the compression.

As an example, let us consider a sentence (5) and its compression (6).

(5) It is likely that a Macintosh version will be available soon.
(6) A Macintosh version will be available.

The parse tree of (5) is shown in Fig.5. To obtain the compression, the method
should remove nodes NP2, AUX5, JJ7, IN9 and ADVP21. Since the removal
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operations are assumed to be independent, it is difficult to compress such sen-
tence. The same can be said for a sentence (7) and its compression (8).

(7) The CAKE in CAKEware is an acronym which stands for
computer-assisted knowledge engineering.

(8) The CAKE in CAKEware stands for computer-assisted
knowledge engineering.

3 Method of Removing Recursive Structures

This section describes our algorithm for sentence compression. We introduce
a new operation: removing recursive structures from parse trees. At first, we
describes the basic idea of our approach.



6 Seiji Egawa, Yoshihide Kato, Shigeki Matsubara

IN9
that

JJ7
likely

AUX5
is

PRP3
It
NP2 VP4

SBAR8
ADJP6

RB22
soon

JJ20
available

ADJP19 ADVP21AUX18
be

VP17MD16
will

VP15NP11
NN14
versionMacintosha

NN13DT12

replacement S10

RB22
soon

JJ20
available

ADJP19 ADVP21AUX18
be

VP17MD16
will

VP15NP11
NN14
versionMacintosha

NN13DT12

S1

S10

Fig. 6. Removing recursive structure for sentence compression

As an example, let us consider the parse tree shown in Fig. 5. The parse tree
has a recursive structure in which node S1 includes node S10. If we replace S1

with S10, we obtain a parse tree (see Fig. 6). The parse tree is grammatical be-
cause S10 plays the same syntactic role as S1. Our method introduces such oper-
ation. This operation can capture the dependence among removed constituents.
For example, the operation captures the dependence between NP2, AUX5, JJ7

and IN9 removals, because they are removed by one operation.
In order to confirm the validity of this method, we investigated how often such

operation occurs in human compression. It occurs 579 times in compressing 943
sentences which are included in the compression parallel corpus used in Knight
and Marcu[2]. 110 operations out of 579 are particularly difficult to emulate
for previous methods because there are some other nodes on the path from the
ancestor node to the descendant node with the same syntactic category and the
multiple nodes have a dependence.

Although the problem still remains whether important information of the
original sentence is retained or not, it can be solved by training probabilities of
removal operations from a compression parallel corpus.

3.1 Elementary Unit

This section gives some definitions for explanations of our method.

Definition 1 (Recursive node) Let T be a parse tree, η be a node in T and
X be the label of η. We call η recursive if there exists a node η′ satisfying the
following conditions:

1. η′ is a descendant of η.
2. The label of η′ is X.
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We call η non-recursive if η is not recursive.

For example, there are three recursive nodes, S1, VP4 and VP15 in Fig. 7.
The node η′ which is the nearest to η is called foot. The path from η to η′ is
called minimal recursive path (MRP). We say that the root of the MRP is η.
An MRP corresponds to a recursive structure in a parse tree. Fig. 8 shows the
MRP whose root is S1.

3.2 Removing Elementary Units from Parse Tree

Our proposed algorithm removes constituents and MRPs from the parse tree of
an input sentence to generate the compression. We use two types of operations:

removeConst operations remove a non-recursive node η and all descendants
of η from parse tree.

removeMRP operations remove a recursive node η and all descendants of η,
and replace the position of η with the foot of η

By applying these operations to the parse tree of the input sentence, we can
obtain the compressed version of it. However, we need to choose the operations
to generate a compression which is grammatically correct and preserves the
important information of the original sentence. For this purpose, our method
learns the process of applying operations from a compression parallel corpus.

The compression parallel corpus consists of pairs of original sentences and
their compressions. Our method first assigns the parse tree only to original sen-
tences. For each pair of original parse tree and its compression, we determine
which operations are applied to the parse tree. Next, we count the frequency of
applying operations and estimate the probabilities.
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Our method determines which operations are applied as follows: For each
node in the parse tree, the operation is applied, if it does not remove any words
in the compression. The operations are applied in a top-down fashion.

As an example, let us consider the input sentence (5) and its compression
(6). Fig. 9 shows the parse tree of (5). For each terminal node, it is marked with
bold line if it exists in the compression (6).

At first, the procedure tries to apply removeMRP since the root S1 is re-
cursive. Because the word sequence “It is likely that”, which is removed by the
operation, do not overlap the compression, so this operation is applied to S1.
Note that nodes NP2, PRP3, · · ·, IN9 are removed by the operation to S1. Next
S10 is non-recursive. Applying removeConst, all words in the original tree are
removed. Because some of these words exist in compression (6), this operation is
not applied. For each node from NP11 to NN14, removeConst operation is not
applied for the same reason. VP15 is recursive. The removeMRP operation is
not applied for this node because this operation deletes the word “will”, which
appears in the compression (6). For each node from MD16 to JJ20, which are
non-recursive, the removeConst operations are not applied. ADVP21 is non-
recursive. The removeConst operation is applied, since its descendant, “soon”,
does not exist in the compression (6).

As the above, applying each corresponding operation to S1 and ADVP21,
we obtain the parse tree of (6). This tree (shown in Fig. 10) is grammatical as
opposed to the one generated by the previous method.

After determining, for each node, whether the operation is applied or not,
we estimate its probability by maximum entropy method using the features:

a. the removal operation type (removeConst or removeMRP)
b. the current node label
c. the parent node label
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d. the daughter node labels
e. the left sibling node labels and which siblings are removed（only if the op-

eration type is removeConst）
f. the node labels on MRP
g. the daughter node labels of nodes on MRP
h. the foot node label

3.3 Probabilistic Sentence Compression Model

This section describes how to calculate the compression probability by using
removal probabilities.

We define the probability of compressing a long sentence l to a short sentence
s as the probability of generating the compressed version of the parse tree from
the parse tree of l by removal operations. The probability is calculated by the
product of the removing probabilities, that is,
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P (s|l) =
∏
η∈N

P (aη|η, l)

where N is the set of nodes remaining in the parse tree of s or to which operations
are applied. N does not have any node which is removed by applying a removal
operation to an ancestor. aη is 1 if an operation is applied to η and 0 if not.

For example, the probability of the compressing sentence (5) to the sen-
tence (6) is P (1|S1) P (0|NP11) P (0|DT12) P (0|NN13) P (0|NN14) P (0|VP15)
P (0|MD16) P (0|VP17) P (0|AUX18) P (0|ADJP19) P (0|JJ20) P (1|RB21).
For simplicity, we abbreviate l.

3.4 Computing Scores

Using the model described in the previous section, we compute the compression
score for every compression candidate s.

Score(s) = length(s)α · log P (s|l)

This score is proposed by Unno et al. and the compression model P (s|l) is
replaced with ours. α is a length parameter which controls the average length
of outputs. Our method formalize the sentence compression problem as finding
the compression which maximizes the score.

4 Experiments

To evaluate our algorithm, we conducted experiments. We use the compression
parallel corpus used in Knight and Marcu[2]. This corpus consists of sentence
pairs extracted from the Ziff-Davis corpus, which includes news articles on com-
puter products. 32 sentence pairs in this corpus are used for evaluation in Knight
and Marcu’s experiment. We also use these sentences as a test set. Our model is
trained on 943 sentences pairs, where each word in a compression corresponds
to only one word in the original sentence, in the rest of the compression corpus.

4.1 Comparison with Original Results

At first, we compared our model with noisy-channel model in Knight and Marcu[2].
We evaluated both methods using four measures, compression rate, word F-
measure, word bigram F-measure and BLEU score[6]. These measures except
compression rate represent the similarity between sentences and we evaluate a
compression with the degree of similarity to human compression. The BLEU
score is a measure for machine translation quality. We used from unigram to 4-
gram precisions for the BLEU score as in Unno et al.[8]. The value of the length
parameter α for our method is determined by using 50 sentence pairs randomly
extracted from training set. In this experiment, α = −0.43.

The results are shown in Table 1. Our method achieved comparable accuracy
with Knight and Marcu’s method.
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Table 1. Comparison with Knight and Marcu

Method compression F-measure bigram F-measure BLEU

Knight and Marcu 70.4% 71.9% 58.5% 48.9%

Our method 50.7% 68.4% 58.5% 52.8%

Human 53.3%

4.2 Examples of Compressions

Table 2 shows three sentences with compressions by human, the previous meth-
ods and our method. These sentences are used in the literature [8]. The first
sentence is accurately compressed by a bottom-up method of Unno et al. while
Knight and Marcu failed. Our method has also generated a correct compression.
The second sentence has some recursive structures in its parse tree and both
previous methods can not correctly compress it. Removing one of the recursive
structures, Our method generated proper compression. Although all of the com-
pressions generated for the third sentence are different from the one generated
by human, our method seems to be superior to the others from the viewpoints
of grammaticality and meaning.

5 Conclusion

We proposed a probabilistic method for sentence compression to remove recur-
sive structures in the parse trees of original sentences. While recursive structures
frequently appear in the parse tree, the previous methods do not deal with such
the structure. Our method accurately compress such sentences applying a re-
moval operation of the recursive structure. The experimental results show that
our model has comparable power for sentence compression with other methods,
and correctly compresses certain sentences which those methods cannot deal
with. Evaluating our method only using three measures in this paper, we will
evaluate our method by human judgments in terms of grammaticality and re-
tention of important information.
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